Most stand-alone solar power systems will need a charge controller. The purpose of this is to ensure that the battery is never overcharged, by diverting power away from it once it is fully charged. Only if a very small solar panel such as a battery saver is used to charge a large battery is it possible to do without a controller. Most charge controllers also incorporate a low-voltage disconnect function, which prevents the battery from being damaged by being completely discharged. It does this by switching off any DC appliances when the battery voltage falls dangerously low.

While the specific control method and algorithm vary among charge controllers, all have basic parameters and characteristics. Manufacturer’s data generally provides the limits of controller application such as PV and load currents, operating temperatures, losses, set points, and set point hysteresis values. In some cases the set points may be intentionally dependent upon the temperature of the battery and/or controller, and the magnitude of the battery current.

Regulation set point (VR): This set point is the maximum voltage a controller allows the battery to reach. At this point a controller will either discontinue battery charging or begin to regulate the amount of current delivered to the battery. Proper selection of this set point depends on the specific battery chemistry and operating temperature.

Regulation hysteresis (VRH): The set point is voltage span or difference between the VR set point and the voltage when the full array current is reapplied. The greater this voltage span, the longer the array current is interrupted from charging the battery. If the VRH is too small, then the control element will oscillate, inducing noise and possibly harming the switching element. The VRH is an important factor in determining the charging effectiveness of a controller.

Low voltage disconnect (LVD): The set point is voltage at which the load is disconnected from the battery to prevent over discharge. The LVD defines the actual allowable maximum depth-of-discharge and available capacity of the battery. The available capacity must be carefully estimated in the system design and sizing process. Typically, the LVD does not need to be temperature compensated unless the batteries operate below 0°C on a frequent basis. The proper LVD set point will maintain good battery health while providing the maximum available battery capacity to the system.

Low voltage disconnect hysteresis (LVDH): This set point is the voltage span or difference between the LVD set point and the voltage at which the load is reconnected to the battery. If the LVDH is too small, the load may cycle on and off rapidly at low battery state-of-charge, possibly damaging the load and/or controller. If the LVDH is too large, the load may remain off for extended periods until the array fully recharges the battery. With a large LVDH, battery health may be improved due to reduced battery cycling, but this will reduce load availability. The proper LVDH selection will depend on the battery chemistry, battery capacity, and PV and load currents.

Charge Controller Designs
Two basic methods exist for controlling or regulating the charging of a battery from a PV module or array – shunt and series regulation. While both of these methods are effectively used, each method may incorporate a number of variations that alter their basic performance and applicability. Simple designs interrupt or disconnect the array from the battery at regulation, while more sophisticated designs limit the current to the battery in a linear manner that maintains a high battery voltage.
The algorithm or control strategy of a battery charge controller determines the effectiveness of battery charging and PV array utilization, and ultimately the ability of the system to meet the electrical load demands. Most importantly, the controller algorithm defines the way in which PV array power is applied to the battery in the system. In general, interrupting on-off type controllers require a higher regulation set point to bring batteries up to full state of charge than controllers that limit the array current in a gradual manner.

Comments closed.